Pedestrian detection for intelligent transportation systems combining AdaBoost algorithm and support vector machine
نویسندگان
چکیده
Pedestrians are the vulnerable participants in transportation system when crashes happen. It is important to detect pedestrian efficiently and accurately in many computer vision applications, such as intelligent transportation systems (ITSs) and safety driving assistant systems (SDASs). This paper proposes a two-stage pedestrian detection method based on machine vision. In the first stage, AdaBoost algorithm and cascading method are adopted to segment pedestrian candidates from image. To confirm whether each candidate is pedestrian or not, a second stage is needed to eliminate some false positives. In this stage, a pedestrian recognizing classifier is trained with support vector machine (SVM). The input features used for SVM training are extracted from both the sample gray images and edge images. Finally, the performance of the proposed pedestrian detection method is tested with real-world data. Results show that the performance is better than conventional single-stage classifier, such as AdaBoost based or SVM based classifier. 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Intelligent application for Heart disease detection using Hybrid Optimization algorithm
Prediction of heart disease is very important because it is one of the causes of death around the world. Moreover, heart disease prediction in the early stage plays a main role in the treatment and recovery disease and reduces costs of diagnosis disease and side effects it. Machine learning algorithms are able to identify an effective pattern for diagnosis and treatment of the disease and ident...
متن کاملDistance Sensitive AdaBoost using Distance Weight Function
Abstract This paper proposes a new method to improve performance of AdaBoost by using a distance weight function to increase the accuracy of its machine learning processes. The proposed distance weight algorithm improves classification in areas where the original binary classifier is weak. This paper derives the new algorithm’s optimal solution, and it demonstrates how classifier accuracy can b...
متن کاملBoosting Soft-Margin SVM with Feature Selection for Pedestrian Detection
We present an example-based algorithm for detecting objects in images by integrating component-based classifiers, which automaticaly select the best feature for each classifier and are combined according to the AdaBoost algorithm. The system employs a soft-margin SVM for the base learner, which is trained for all features and the optimal feature is selected at each stage of boosting. We employe...
متن کاملEmpirical Study of Boosted Weak Classifier in Object Detection Problem
In this paper, we study the use of boosted weak classifiers selected with AdaBoost algorithm in object detection. Our work is motivated by the good performance of AdaBoost in selecting discriminative features and the effectiveness of Classification and Regression Tree (CART) compared with other classification methods. First, we study the cascaded structure of the boosted weak classifier detecto...
متن کاملA High Accuracy Pedestrian Detection System Combining a Cascade AdaBoost Detector and Random Vector Functional-Link Net
In pedestrian detection methods, their high accuracy detection rates are always obtained at the cost of a large amount of false pedestrians. In order to overcome this problem, the authors propose an accurate pedestrian detection system based on two machine learning methods: cascade AdaBoost detector and random vector functional-link net. During the offline training phase, the parameters of a ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 39 شماره
صفحات -
تاریخ انتشار 2012